وبلاگ دانشجویان اصلاح  ارومیه

وبلاگ دانشجویان اصلاح ارومیه

وبلاگ اصلاح نباتات:دارای انواع مقاله ها و تحقیقات در زمینه کشاورزی .
وبلاگ دانشجویان اصلاح  ارومیه

وبلاگ دانشجویان اصلاح ارومیه

وبلاگ اصلاح نباتات:دارای انواع مقاله ها و تحقیقات در زمینه کشاورزی .

فتوتروپیسم ریشه

فتوتروپیسم ریشه: چگونگی تاثیر نور و جاذبه بر شکل گیاه

چکیده: تعامل عوامل تروپیسم می تواند در تعیین شکل نهایی گیاه و ارگانهایش اهمیت زیادی داشته باشد. ما پاسخ های رشد را در ریشه گیاه به عنوان نمونه ای از این تعامل بررسی کردیم. جاذبه نقش برجسته ای در ریشه ریشه و فتوتروپیسم نقش مهمی در جهت رشد کردن اندامهای هوایی گیاه دارد. در نور آبی یا سفید، ریشه فتوتروپیسم منفی دارد اما نور قرمز باعث فتوتروپیسم مثبت در آن می شود.

متن مقاله:

در گیاه گلدار Arabidopsis پیگمانهای حساس به نور به نام فیتوکروم (PAYA) و فتیتوکروم (phyB)B  واسطه پاسخ مثبت ریشه به نور قرمز هستند چون ایجاد جهش ژنی در آنها باعث نقص شدید این پاسخ می شود. فتوتروپیسم منفی نسبت به نور آبی توسط گیرنده های نوری خانواده فتوتروپین اعمال می شود جهش در phyA, phy AB (اما نه در phyB) می تواند مانع این پاسخ به WT شود. تفاوتهای مشاهده شده در پاسخ های فتوتروییک به علت محدودیت رشد نیست چون میزان رشد در بین انواع جهش ها بررسی شد و تفاوت مهمی با رشد WT ندارد. بنابراین تحقیق مانشان می دهد که سیستم های نور آبی و قرمز درگیاه با عمل متقابل با هم رشد گیاه را تنظیم کرده و فیتوکروم نقش کلیدی در اعمال اثر تحریکات متعدد محیطی دارد.

 پاسخ های گیاه به تحریکات محیطی اغلب شامل چند نوع حرکت است. گیاه عمدتا می تواند ۲ نوع حرکت نشان دهد: حرکات تروپیسم و nastic(گرایش) تروپیسم یک رشد جهت دار در پاسخ به یک تحریک است از جمله: فتوتروپیسم در پاسخ به نور و گراویتروپیسم در پاسخ به جاذبه، در حالیکه گرایش پاسخ به تحریکات پیچیده تر است. مثل خمیدگی ، یک حرکت نوسانی. تعامل بین تروپیسم ها و پاسخ های گرایشی می تواند در تعیین رشد نهایی و شکل گیری گیاه بسیار مهم باشد. درریشه اثر گروائی تروپیسم کاملا مشخص است چون جاذبه مهمترین سیگنال برای رشد و تکامل این اندام است. اما تحقیقات اخیر نشان داده اند که گراوئی تروپیسم با سایر پاسخ های تروپیستی از جنله فتوتروپیسم، هیدروتروپیسم، تیگموتروپیسم وارد عمل شده و شکل نهایی کل ریشه را تعیین می کنند. بررسی های فتوتروپیسم توسط Funke, Hubert بررسی شده و اخیرا توسط Shimura, Okada که موتاسیونهای فتوتروپیسم ریشه را جدا کرده اند مورد بازبینی قرار گرفته مشخص شد که در این جهش ها گیرنده نور آبی فتوتروپین شکل دارد. ریشه نسبت به نور آبی و سفید فتوتروپیک منفی است. ولی همین رسپتورهای نوری در ارگانهای هوایی باعث فتوتروپیسم مثبت می شوند. علاوه بر فتوتروپیسم منفی با نور آبی، نور قرمز باعث فتوتروپیسم مثبت در ریشه های اولیه گیاه Arabidpsis می شود پاسخ نوری نسبت به نور قرمز در مقایسه با سایر تروپیسم مثبت ناشی از نور قرمز می تواند در ریشه های فرعی Arabidpsis نیز ظاهر شود. در این مقاله ما فتوتروپیسم های ریشه نسبتاً ضعیف است اما موتاسیون آن باعث نقص در حساسیت به جاذبه می شود. اثر فتوتروپیسم مثبت نور قرمز و منفی نور آبی را در ریشه های Arabidpsis بررسی می کنیم نتایج مانشان میدهد که فیتوکرومهای جاذب نور قرمز، خصوصا phy B, phy A در هر دو نوع پاسخ فتوتروپیسم در ریشه های Arabidpsis نقش دارند.

مواد و روشها

مواد گیاهی و شرایط کشت:

در این آزمایشات ما از نوع طبیعی Arabidpsis Thaliana از اکوتیپ wassilewskija (ws), Ladsberg erecta (Ler) استفاده کردیم . جهش های فیتوکروم مورد استفاده عبارت بودند از PhyAb-1, phy B-1 , phyA – ۲۰۱  خصوصیات آنها درمقاله اخیری که توسط Hennig و همکارانش منتشر شده آمده است. جهش starchless مورد استفاده در این تحقیقات دچار نقص در فسفوکوموتاز (pgm) می باشد و توسط (Ruppel) و همکارانش توضیح داده شده. سطح بذرها استریل شده و در محیط کشتی با خصوصیات زیر که توسط kiss وهمکارانش پیشنهاد شده کاشته شد:

نمکهای Murashig-skoog نمیه قوی با(w/v) 1% سوکروز و MES یک میلی موم (PH=5/5) در ۲/۱% (W/V) آگار بذرها در نور سفید ۷۰-۹۰ Mmolm -2 s -1 جوانه زدند و زمانی که طول ریشه به حدود ۱cm رسید وارد آزمایش شدند.

منابع نوری و سیتسم فیربگ کامیپوتری مورد استفاه در آزمایشات فتوتروپیسم: در بعضی از این آزمایشات نور آبی و قرمز از عبور دادن نور سفید از حبابهای فلورسنت و با استفاده از فیلترهای شیشه ای مشبک بدست  آمد حداکثر طول موج عبور از فیلترهای آبی ۴۹۰nm و برای فیلتر قرمز ۶۳۰ nm بود. در هر دو فیلتر میزان تغییر ۱۲-۱۴M mol m -2 s -1  است. در آزمایشات فتوتروپیسم که با سیستم فیدبک انجام می شوند. دیود منتشر کننده نور قرمز (LED) 660nm و نور آبی در ۴۶۸ nm LED   بکار می رود. بذرهای جوانه زده طوری جابجا شدند که نوک ریشه آنها د رمرکز ظرف کشت قرار گیرد. پس از ۱۲-۱۵ ساعت دوره تعادل، ظرف حاوی بذر بطور عمودی در تاریکی قرار داده می شود و آن با سیستم تصویر برداری دیجیتالی که توسط mullen و همکارانش معرفی شده بررسی می شود. با استفاه از نور مادورن قرمز (۹۴۰ mm LED) و یک دوربین CCD مجهز به کامپیوتر PC از ریشه ها تصویر برداری شد. علاوه بر این یک سیستم کامپیوتری فیدبک برای ایجاد و حفظ زاویه صحیح نوک ریشه نسبت به خط عمود، در مدتی که نور قرمز یا آبی به طور یکطرفه آن را تحریک می کردند، مورد استفاده قرار گرفت.

اندازه گیری انحنا و آنالیزهای آماری: در آزمایشات فتوتروپیسم، ریشه هایی که به طرف منبع نور رشد می کردند زاویه مثبت و آنها که در خلاف جهت نور رشد می کردند زاویه منفی در نظر گرفته شدند. انحنای ریشه بر اساس تغییر زاویه از نقطه شروع تعیین می شد. اهمیت آماری با استفاده از تست یک طرفه (p<0/05) ANPOVA تعیین می شد و در صورت لزوم توسط (P<0/05) Dunnett’s post,Test پیشگیری می شد جائیکه معیارهای تست ANOVA مناسب نبودند، یک تست ANOVA با روش (P<0/05) Dunn برای مقایسه های متعدد مورد استفاده قرار می گرفت. جزئیات اضافی در مورد عکس گرفتن و کل فرآیند توسط Kiss و همکارانش ارائه شده.

نتایج

آزمایشاتی که با تابش پایدار نور یک طرفه به دانه Arabidopsis انجام شد، نشان داد که نور قرمز و آبی اثر معکوسی بر جهت رشد ریشه دارند(شکل ۱) ریشه دانه هایی که حاوی جهش starchless pgm بودند که دچار نقص ر گراوئی تروپیسم می باشند. رشدشان با نور یک طرفه تفاوتهایی را از نظر جهت رشد ریشه نشان می داد بطوریکه ریشه به طرف نور قرمز رشد می کرد و از منبع نور آبی دور می شد. همانطور که Hangarter نیز گفته است، جوانه های اولیه (هیپوکوتیل) به طرف نور آبی رشد کرده و در مقابل نور قرمز جهت خود را تغییر می دهند. این مشاهدات نشان می دهد که ریشه نسبت به نور آبی فتوتروپیسم منفی و نسبت به قرمز فتوتروپیسم مثبت داد. منحنی های مربوط به پاسخ سرعت تغییر برای pgm, wt نشان می دهد که پاسخ فتوتروپیک در  از آشکار شده و در  به حد اشباع می رسد(شکل ۲() همانطور که قبلا نیز گفته شده فتورتروپیسم مثبت در جهش pgm درمقایسه با wt قوی تر است. بالاتربودن پاسخ فتوتروپیک در جهش pgm در سرعت تغییرات بالاتر مشهودند است. واضح است که پاسخ نوری در ریشه نسبتا ضعیف تر از پاسخ نسبت به جاذبه است بنابراین در راستای تلاش جهت جداکردن پاسخ های فتوتروپیسم از سایر پاسخ ها ما از یک تکنیک نسبتا جدید برای بررسی پاسخ های تروپیستی استفاده کردیم که شامل استفاده از یک سیستم فیدبک برای چرخاند دانه بطوری است که نوک ریشه همیشه زاویه خاصی را حفظ کند. در این تحقیق ما زاویه صفر درجه سانتی گراد۰عمود) را انتخاب کردیم. این باعث می شد که بتوانیم فتوتروپیسم را جدا از پیچیدگی های ناشی از تحریکات جاذبه ای بررسی کنیم. تحت این شرایط ریشه فتوتروپیسم مثبت قوی نسبت به نور قرمز نشان می دهد(شکل ۳) علاوه بر این پاسخ بدست آمده با سیستم فیدبک در مقایسه با نتایج بدست آمده از شرایطی که ریشه اجباری در حفظ زاویه نداشت، بسیار برجسته تر و جالب تر بود(شکل ۲) پس از یک دوره نهفته ۲-۱ ساعت، ریشه به تحریک با نور قرمز پاسخ داد و به مدت چند ساعت شروع به خمیدگی کرد و پس از رسیدن انحنا به حد تقریبا ۳۰ درجه سانتی گراد به فاز کفه ای رسید(شکل ۳) بیشترین پاسخ به نور قرمز در گیاهان با واسطه پیگمانهای گیرنده های نوری فیتوکروم اعمال می شود. بنابراین ما می خواستیم ثابت کنیم که آیا فیتوکروم در این پاسخ نوری نقش داردو اگر دارد کدامیک از ۵ عضو ریشه در گیاهان گلدار است در نور آبی یا سفید ریشه فتوتروپیسم منفی نشان می دهد اما نور قرمز باعث پاسخ فتوتروپیسم مثبت می شود. در این مقاله گفتیم که سیتستم فیدبک کامپیوتری که توسط mullen معرفی شده برای بررسی فتوتروپیسم ریشه مفید است چون بطور مشخصی نشان می دهد که پاسخ فتوتروپیک در نور آبی و قرمز افزایش می یابد. ما دریافتیم که پاسخ فتوتروپیک مثبت در سرعت تغییر(fluence rate)  ۰/۱ آغاز شده و تا ۱۰۰ ادامه می یابد. (شکل ۲) fleuence rate  تا حد۱۰ دیده می شود (شکل ۲) بدون هیچ تناقص یا اثر معکوسی بر انحنا غیر از جهت متفاوت فتوتروپیسم مثبت ناشی ازنور قرمز و وابسته به fleuence rate مشابه به فتوتروپیسم منفی ناشی از نور آبی در ریشه گیاه Arabidopsis است و این در گزارش sakai و همکارانش که حداکثر انحنا را در محدوده  گزارش کردند نیز آمده است. ما نسبت قدرت پاسخ های تروپیستی ریشه را بدین صورت ارزیابی کردیم: گروائی تروپیسم > فتوتروپیسمی منفی (نور آبی) > فتوتروپیسم مثبت (نور قرمز) علت اینکه فتوتروپیسم ریشه به مدت چندین دهه مورد مطالعه قرار نگرفته این است که پاسخ ریشه به جاذبه بیشتر از پاسخ فتوتروپیک آن بوده است.

یکی از شاخص های نشان دهنده قدرت تروپیسم ریشه، محاسبه طول دوران نهفته قبل از شروع پاسخ به تحریک است. این دوره های نهفته را می توان با سیستم فیدبک mulken ارزیابی کرد. با استفاده از این روش دوره نهفته برای نور قرمز ۲-۱ ساعت (شکل ۳و ۵) و برای نور آبی ۴۰-۳۰ دقیقه بود(در گیاه Arabidopsis) دوره نهفته گراوی تروپیسم برای همین گیاه ۱۰ دقیقه بود و واضح است که گروائی تروپیسم همانطور که پارامترها نشان می دهد قوی ترین عامل تروپیسم در ریشه است. مثلا منحنی ناشی از گروائی تروپیسم که توسط سیستم فیدبک اندازه گیری شده تقریبا همیشه حالت خطی دارد و به سطح تعادل و کفه ای نمی رسد در حالیکه پاسخ به نور قرمز و آبی پس از یک افزایش خطی به حال کفه ای می رسد.

نقش فیتوکروم در فتوتروپیسم ریشه

نتایج ما نشان می دهد که فیتورکروم در هر دو فتوتروپیسم مثبت و منفی در گیاه Arabidopsis نقش دارد. اولا phy B, phy A واسطه های پاسخ به نور قرمز هستند چون جهش منفرد (و جهش دوبل phy AB ) این پاسخ را به شدت مختل می کند. ثانیا در فتوتروپیسم منفی نورآبی phy) B, phyAB  ولی نه (phyB از نظر پاسخ نسبت به wt مهار می شود. (شکل ۶) به علاوه در تحقیقات اخیر که در گروائی تروپیسم ریشه phy AB و phyB (و نه phy A) از نظر پاسخ نسبت به  مهار WT می شود. چون هر دو نوع جهش منفرد و دوبل باعث اشکال در فتوتروپیسم نور قرمز می شوند. به این نتیجه می رسیم که فتوتروپیسم مثبت نور مرکز مستقیما توسط فیتورکروم تنظیم می شود در حالیکه درگروائی تروپیسم و فتوتروپیسم نور آبی فیتوکروم ها ممکن نقش بیش از اثر تنظیمی داشته باشد. در همه این موارد اختلاف مشاهده شده در پاسخ های تروپیستی، به علت محدودیتهای رشدی نیست چون میزان رشد در بین جهش های مورد آزمایش با نوع طبیعی (WT) تفاوت چندانی نداشت. چندین تحقیق نشان داده اند که فیتوکرومها در تنظیم پاسخ های فتوتروپیستی در جوانه اولیه نقش دارند و نتیجه این تحقیق نیز این را تایید می کند. مثلا Janoudi وهمکارانش گزارش کردند که phy B, phy A برای بروز طبیعی فتوتروپیسم وجود دارد. Parks و همکارانش نشان دادند که phy A اثر فتوترونیک نور قرمز را در جوانه اولیه افزایش می دهد. علاوه بر اثر مستقیم بر فتوتروپیسم مثبت نور قرمز و اثر تنظیمی در فتوتروپیسم نور آبی، phy B, phy A در گراوئی تروپیسم هم نقش دارند مثلا کاهش گراوئی تروپیسم منفی ناشی از نور، بطور همزمان توط این دو عضوخانواده فیتوکروم کنترل می شود. در حمایت از این نتایج، سایر محققین نیز گزارش کرند که عمل phy B, phy A در تکامل دانه در برابر نور، متوقف کردن گراوئی تروپیسم منفی است تا تحریکات فتوتروپیک بتوانند جهت رشد را تعیین کنند. کاملاً بدیهی است که سیستم سیگنال نور آبی و قرمز با یکدیگر تعامل دارند و همچنین با سیستم جاذبه ای در ریشه فیتوکرومها در ۳ تای این سیستم ها را تنظیم می کنند اما ترکیب متفاوتی از فیتوکرومها هر یک از این پاسخ ها را تنظیم می کنند. این تفاوتها می تواند باعث تنظیم متفاوت مسیرهای عبور شینال شودو ممکن است در کنترل اثر تحریکات محیطی با اهمیت باشد.

استفاده از میکروگراویتی برای بررسی فتوتروپیسم ریشه:

 به منظرو بررسی بیشتر از تعامل پیچیده در بین پاسخ  های تروپیستی، ما تحقیقات را طوری برنامه ریزی کردیم که تحریکات جاذبه ای را حذف می کنیم و در طی آزمایش یک شرایط میکروگراویتی وجود داشته باشد. ما داریم یک تحقیق بین المللی در ایستگاه فضایی ISS را طراحی می کنیم و سیستم کشاورزی  (Emcs) Europear Modular از ریشه گیاه Arabidopsis استفاده خواهد کرد. Emcs یک انکوباتور با کنترل اتمسفر دارد و انواع LED’S و یک سیستم دوربین ویدئوئی قابل حمل با قابلیت بالای ثبت جزئیات که ما برای این پروژه نیاز داریم . سیستم کامل روی یک پالت سانترویفوژ متغیر قرار دارد بطوریکه کنترل inflight 1-g قابل اجرات و واسطه levels نیز می تواند انتخاب شود. یک مزیت مهم Emcs این است که سیستم اتومات است چون دسترسی به خدمه در طول فاز اول ISS محدود است. ما در حال حاضر برای طراحی یک سخت افزار آزمایشی منحصر بفرد که در مطالعات فتوتروپیسم EmCS لازم است.، با ناسا همکاری می کنیم. در پایان این پروژه این آزمایشات باید جزئیات بیشتری را درباره فتوتروپیسم ریشه مشخص کنند و اطلاعات جدیدی درباره اینکه چگونه نور قرمز فتوتروپیسم نور آبی را افزایش می دهد بدست دهند و اطلاعات بیشتری در مورد سیتم حسی گیاهان وعمل آنها در مقابل نورهای مختلف و جاذبه فراهم کنند.

منبع

تاریخچه توسعه بیوتکنولوژی

تاریخچة‌ توسعه بیوتکنولوژی

 

چینی‌ها از سویای کپک‌زده بعنوان آنتی‌بیوتیک جهت درمان جوشها و دملها بهره می‌بردند. و در سال 1797 برای اولین بار واکسن آبله به انسان تزریق شد.

 

اولین آنزیم در سال 1832 جداسازی شد. در سال 1914 از باکتریها برای تصفیه پساب در شهر منچستر انگلستان استفاده شد. اصطلاح بیوتکنولوژی برای اولین بار در سال 1919 توسط یک مهندس کشاورزی مجاری بکار برده شد. در سال 1920 هورمون رشد توسط دو محقق بنام  Long وEvans  کشف شد. پنی‌سیلین در سال 1928 بعنوان اولین آنتی‌بیوتیک کشف و در سال 1947 به تولید انبوه رسید و این بعنوان شروع تاریخ بیوتکنولوژی صنعتی قلمداد شده است. در سال 1950 اینترفرونها کشف شدند. در سال 1953 ساختار فضایی DNA توسط دو دانشمند مشهور واتسون و کریک معرفی شد. در سال 1969 اولین آنزیم در آزمایشگاه، سنتز شد. سال 1970 سنتز کامل ژن برای اولین بار صورت گرفت. در سال 1973 روش مهندسی ژنتیک با معرفی آنزیم‌های برش‌دهنده و جوش‌دهنده، بطور موفقیت‌آمیز توسط دو دانشمند استفن‌کوهن و هربرت بویر انجام شد. در سال 1975 اولین آنتی‌بادی منوکلونال برای اولین بار تولید شد. انسولین انسانی بعنوان اولین محصول مهندسی ژنتیک برای معالجه بیماران دیابتی در سال 1982 مورد تایید قرار گرفت. سال 1990 اولین گاو شیرده تراریخته معرفی شد. اولین محصول غذایی مهندسی ژنتیک بنام گوجه FLAVRSAR در سال 1994 وارد بازار شد. در سال 1997 محققین اسکاتلندی اولین گوسفند کلون شده بنام دالی را معرفی کردند. سال 2000 نقشه ژنوم انسان اعلام شد و این امر موجب آغاز تحقیقات و دست‌آوردهای عظیم و شگرف در زمینه ژن‌درمانی و علاج بیمارهای صعب‌العلاج خواهد شد. .

   

با نگرشی بر رشد بازار فرآورده‌های فناوری زیستی جهان در سال 2000، به گسترة عملکرد انقلاب سبز بیوتکنولوژی و برتری آن نسبت به اغلب علوم و فنون پی می‌برید.

 

با رشد بی‌رویه جمعیت و افزایش آن به بیش از 8 میلیارد نفر در سال 2030 و افزایش تقاضا، بیوتکنولوژی پاسخگوی شایسته‌ای جهت تامین امنیت ملی در ابعاد غذایی، دارویی، بهداشتی، محیط‌زیست، دفاعی و قضایی است. در حال حاضر از طریق بیوتکنولوژی صنعتی و با استفاده از راکتورهای زیستی و میکروارگانیسم‌های مناسب، فرآوردهای مهم و استراتژیک تولید می‌شود که پاسخگوی نیاز بشر در عرصه غذا،‌ بهداشت و محیط‌زیست می‌باشد.

 

همزمان با ظهور بیوتکنولوژی نوین در دهه 70 در قرن بیستم، ابزارهای مورد استفاده سنتی جای خود را به فنون بیوتکنولوژی نوین سپردند. در جدول 2 مقایسه‌ای بین فنون بکار گرفته شده در بیوتکنولوژی کلاسیک و نوین آورده شده است.

 

به موازات دگرگونی در بیوتکنولوژی، مهندسی زیست‌فرآیند نیز دستخوش تحولات شگرف شد. دورنمای مهندسی زیست  فرآیند و بیوتکنولوژی صنعتی تا قبل از 1980 معطوف به دیدگاههای مهندسی و بزرگنمایی فرآیندها بود، لیکن در جهت‌گیریهای اخیر، بیوتکنولوژی صنعتی از طراحی تجهیزات، بزرگنمایی و مدلسازی ماکروسکوپیک فاصله زیادی گرفته است]ماخذ5[. بنابراین دوران 1980 به بعد برای بیوتکنولوژی صنعتی عصر شکوفایی دیدگاههای زیست‌مولکولی، فرآیندهای سلولی، مهندسی آنزیم و تولید فرآورده‌های جدید از میکروارگانیسم‌های تراریخته، پروتئین داروهای نوترکیب، آنتی بادیهای منوکلونال،‌ اینترفرونهای لکوسیتی، واکسنهای ژنی، زیست‌کاتالیزورهای صنعتی،‌ نسل جدید آنتی‌بیوتیکها و … می‌باشد

 

میزان فروش، یکی از شاخص‌های اقتصادی صنعت بیوتکنولوژی است. با نگاهی به میزان فروش فرآورده‌های بیوتکنولوژی درسال 1997 که نسبت به سال 1996، بیست درصد رشد داشته و به میزان 13 میلیارد دلار می‌رسد، اهمیت سرمایه‌گذاری در این بخش و محوریت این فناوری بعنوان فناوری کلیدی و محوری توسعه پایدار آشکار می‌شود

 

آنزیم‌های صنعتی بعنوان یکی از فرآورده‌های مهم بیوتکنولوژی دارای بازار جهانی به میزان 1.6 میلیارد دلار بوده و برآورد می‌شود این رقم به 3 میلیارد دلار با نرخ رشد سالانه 6.5 درصد افزایش یابد. بازار فروش آنزیم باعث موج بی‌سابقه‌ای از ادغام غولهای سرمایه‌گذاری و همکاری فزآینده شرکت‌های تازه‌تاسیس برای دستیابی به فناوری‌های جدید شده است

 

بیوتکنولوژی  نوین تنها به تولید فرآورده‌های سنتی بسنده نکرده بلکه با ارائه روشهای جدید، امکان تولید فرآورده‌های جدید را برای شرکتها و بخشهای مشتاق و ایجاد فرصتهای شغلی سبب می‌شود. بعنوان مثال تعداد فرصتهای شغلی ناشی از توسعه بیوتکنولوژی در ژاپن در سال 1997 در حدود 30000 بود، در حالیکه پیش‌بینی می‌شود در سال 2010 به 150000 افزایش یابد.


منبع

 

هورمون های گیاهی

هورمون

 

کاربرد هورمون در باغبانی

 

 مقدمه

 

  هورمون به موادی اطلاق می‌شود که در بخشی از بدن موجود زنده ساخته شده و پس از انتقال اثراتی در دیگر قسمتهای موجود به جای می‌‌گذارد و در تراکم‌های بسیار کم فعالند. هورمونهای گیاهی در بافتهای مریستمی و یا جوان ساخته می‌‌شوند و بعد از انتقال یافتن اثر خود را در بافتهای که تا حدودی از محل سازنده دور است بجای می‌‌گذارند. تاکنون پنج گروه هورمون شناخته شده که همه آنها در کشاورزی بخصوص در باغبانی دارای کاربردهای گسترده‌ای هستند که عبارتند از: اکسین ، جیبرلین ، سیتوکینین ، اتیلن ، اسید آبسیزیک.

 

  

ماهیت اکسین

 

اکسینها ، گروهی از هورمونهای گیاهی هستند که باعث طویل شدن سلولهای گیاهی می‌گردند. این مواد طیف گسترده‌ای را از نظر واکنشهای رشد و نموی در گیاهان سبب می‌شوند. واژه اکسین یک اصطلاح عمومی است و به تعدادی از مواد طبیعی گفته می‌شود که فراوان‌ترین و مهمترین اکسین در گیاهان ، اندول استیک اسید (iaa) می‌باشد.

 

مهمترین اثراتی که به اکسین نسبت داده شده است عبارتند از: بزرگ شدن سلول گیاهی ، طویل شدن ساقه گیاه ، تولید ریشه ، تولید آوندهای چوبی ، افزایش رشد جوانه راسی ، جلوگیری از رشد جوانه جانبی ،‌تشکیل میوه ، بزرگ شدن میوه ، تشکیل گرهک در ریشه گیاهانی که دارای باکتریهای تثبیت کننده نیتروژن هستند ، جلوگیری از ریزش برگ ، بیوسنتز پروتئین و  RNAو اثرات دیگر.

 

 

 کاربرد بازدارنده‌های هورمونی در باغبانی

  

مقدمه

   

بازدارنده‌های هورمونی دسته دیگری از هورمونهای گیاهی هستند که بدلیل خاصیت بازدارندگی اکثرا برای کنترل شیمیایی علفهای هرز استفاده می‌شود. بازدارنده‌های هورمونی به دو دسته طبیعی و مصنوعی تقسیم می‌شوند. گروه طبیعی تنها شامل اسیدآبسیزیک است که در تمام گیاهان وجود دارد و گروه مصنوعی خود به چها گروه مواد بازدارنده رشد - مواد کند کننده رشد- مورفکتین و مواد شاخه زا را تقسیم می‌شوند.

   

مواد باز دارنده رشد:

 

این مواد از رشد گیاهان بطور کلی جلوگیری می‌کنند و باعث مرگ گیاهان می‌شوند که علف کش‌ها جزو این گروه هستند علاوه بر این ماده مالئیک هیدرازید هم جز این گروه است که در غلظتهای کم از رشد پیاز و سیب زمینی در انبار جلوگیری می‌کند ولی در غلظتهای بالا به عنوان علف کش است.

 

 

مواد کند کننده رشد

مواد تشکیل دهنده این گروه بدون اینکه تغییری در ظاهر گیاه و یا تعداد برگها و شاخه‌ها بوجود آوردند از رشد گیاه می‌کاهد. مهمترین کاربرد آنها در هرس و به گل نشاندن گیاهان و مقاومت گیاهان در برابر خشکی است.

 

 مورفکتین‌ها :

 

 این مواد به عنوان علف کش و نیز در گل انگیزی و ریزش میوه‌ها و شاخه زایی هم کاربرد دارند.

 

  · مواد شاخه زا:

 

   این مواد تحت عنوان مواد هرس کننده شناخته شده‌اند و برای هرس در باغات میوه از این مواد هم استفاده می‌شود

  

 اسید آبسیزیک و توضیحاتی در مورد آن

 

 اسید آبسیزیک

 

این هورمون بطور گسترده در گیاهان وجود دارد و این بازدارنده هورمونی حدود صد مرتبه از سایر بازدارنده‌ها قویتر است. وقتی که گیاه تحت تاثیر کمبودهایی نظیر آب ، اکسیژن و مواد غذایی قرار گیرد میزان این هورمون به سرعت بالا می‌رود و زمانیکه کمبود مربوط برطرف شود مقدار آن در طول یکی دو روز به حالت عادی بر می‌گردد

  

 

ماهیت شیمیایی اسیدابسیزیک

 

 مراکز عمده ساخته شدن اسیدآبسیزیک:

محل خاصی وجود ندارد و تمامی اندامها بر حسب نیاز آنرا می سازند

 

نحوه انتقال اسیدآبسیزیک در گیاه:

انتقال این هورمون در آوندها صورت میگیرد

 

کاربردهای هورمون اسیدابسیزیک در باغبانی

 

1.کمک به ریزش:

این بازدارنده هورمونی باعث تحریک ریزش و پیری برگ و میوه می‌شود

 

 2.جلوگیری از سبز شدن بذر:

اسیدآبسیزیک از سبز شدن تعداد زیادی از بذرها جلوگیری کرده و یا سبز شدن آنها را به تاخیر می‌اندازد و نیز به علت همین ماده است که بذر در داخل میوه جوانه نمی‌زند

  

3.کند شدن رشد و ایجاد پیری:

اسیدابسیزیک رشد انوع زیادی از بافتها و اندام‌های گیاهای از جمله ساقه‌ها و ریشه‌ها را کند می‌سازد و اثر دیگر آن مربوط به پیری اندامهای گیاهی است چون این هورمون تجزیه کلروفیل را تسریع می‌کند

  

4. تسریع در تشکیل ریشه:

در برخی از گونه‌های ریشه را بهبود می‌بخشد

 

5.اثر روی گلدهی:

در برخی از گیاهان روز کوتاه به گلدهی کمک می‌کند که ممکن است ناشی از کند سازی رشد باشد که خود ان می‌تواند برای گل دادن مساعد باشد.


6.در طولانی کردن دوره خواب بذور و جوانه‌ها و کوتاه داشتن قد گیاهان چوبی از این هورمون استفاده می‌کنند

  

7.استفاده از این هورمون باعث کنترل بسته شدن روزنه‌های گیاه می‌شود که بدین وسیله در هنگام کم آبی مانع از دست رفتن آب گیاه می‌شود

  

8.دخالت در تشکیل غده ها:

 

در گیاهانی که در روزهای کوتاه غده های خود را گسترش می دهند عامل اصلی در تحریک رشد غده ها اسید ابسزیک میباشد



 منبع

اثر هر یک از عناصر ماکرو و میکرو خاک در گیاهان

اثر هر یک از عناصر ماکرو و میکرو در گیاهان

 

عناصر پر مصرف (ماکرو المنت)

 

ازت در گیاه به صورت ترکیبات آلی ولی کم و بیش به شکل نیترید و نیترات دیده میشود. ازت در ساختمان سلول گیاه به صورت پروتیین و اسید های نوکلییک و کلروفیل و آنزیم ها و هورمون ها شرکت دارد. گیاهان در مقابل ازت عکس العمل های زیر را دارند.

افزایش رشد سبزینه ای

رشد و نمو و توسعه متعادل اندام ها

افزایش تولید پروتیین های گیاهی

افزایش تولید میوه و دانه

تیره رنگ شدن برگ ها به سبب افزایش کلروفیل

علایم کمبود: در یک لپه ای ها قسمت میانی پهنک برگ زرد شده و لبه برگ ها سبز باقی می ماند و در دو لپه ای ها تمام قسمت برگ زرد میشود.

 

فسفر: در ساختمان سلولی و در بسیاری از فعالیت های حیاتی گیاه دخالت دارد و باعث تسریع در رشد و رسیدن محصول شده و کیفیت محصول را افزایش میدهد.

علایم کمبود: در یک لپه ای ها به صورت نواحی یا نقاط قرمز رنگ یا ارقوانی بر روی سطح برگ دیده میشود و در دو لپه ای ها رگبرگ های مسن قرمز  یا ارغوانی میشود.

 

پتاسیم در ساختمان گیاه وجود ندارد و وجودش بخاطر ساختن بعضی اسید امینه ها ضروری است. پتاسیم درسنتز و انتقال کربو هیدرات ها و به طور کلی مصرف دی اکسید کربن موثر بوده و برای تشکیل دیواره سلول ضروری است. جذب آب و تعادل جذب عناصر  به پتاسیم نیاز دارد و سبب بالا بردن کیفیت محصول و راندمان فتوسنتز و مقاومت گیاه در برابر امراض میشود.

علایم کمبود: به طور کلی در دو لپه ای ها لبه برگ ها زرد و سپس قهوهای میشود و در یک لپه ای ها این علاعم از نوک برگ ها شروع میشود.

 

گوگرد : در ساختمان برخی از اسید  های امینه و در تشکیل کلروفیل  برگ ها نقش دارد.

علاعم کمبود: رگبرگ ها زرد شده ولی بقیه برگ سبز می ماند.( درست برعکس علایم کمبود منگنز و منیزیوم و آهن که فواصل رگبرگ ها زرد میشود.)

 

کلسیم: وظیفه کلسیم در ساختمان دیواره سلول به صورت پکتات کلسیم است.

 

علاعم کمبود: علایم در برگ های جوان نمایان است که رنگ سبز آنها مایل به زرد می شود و برگ های جوان چروکیده و باز نمیشوند و در کنار برگ ها پیچیدگی مشاهده میشود.

 

منیزیوم : در مرکز ملکول های کلروفیل و به صورت پکتات منیزیوم در ساختمان دیواره سلول وجود دارد.

 

علایم کمبود : در برگ های مسن دیده میشود . علایم آن فواصل بین رگبرگ ها زرد میشود و رگبرگ ها سبز باقی می مانند.

 

عناصر میکرو (ریز مغذی) کم مصرف:

 

آهن و منگنز: منگنز در بعضی از سیستم های آنزیمی برای تولید پروتیین دخالت دارد و آهن در ساختمان بعضی آنزیم ها و بعضی از مواد رتگی دخالت دارد. آهن در عمل فتو سنتز و هم در تنفس گیاه نقش دارد.

 

علاعم کمبود : رگبرگ ها سبز باقی میمانند ولی فواصل بین آنها زرد میشود.

 

روی: در سیستم آنزیمی و اکسین و پروتیین و در عمل تنفس نقش دارد.

 

علایم کمبود: باریک و ضعیف شدن برگ ها که گاهی لکه های بر روی یرگ مشاهده میشود.

 

مس: وظیفه مس در ساختمان آنزیم هاست و علایم کمبود آن سبز ماندن رگبرگ ها و زرد شدن فواصل رگبرگ ها میباشد.

 

بر: برای تقسیم سلولی و جوانه زدن دانه گرده و انتقال بغضی هورمو ن ها و حرکت قند می باشد. در حالت کمبود غنچه ها رشد ننموده و در نتیجه برگ ها کوچک و ضعیف میشوند.

 

درصد مواد غذایی در کود های دامی

 

کود گاوی خشک : درصد ازت ۲  درصد فسفر ۱.۵  درصد پتاس ۲

 

کود اسبی خشک: درصد ازت ۲  درصد فسفر ۱.۵ درصد پتاس ۱.۵

 

کود گوسفندی خشک: درصد ازت:۲  درصد فسفر ۱.۵ درصد پتاس ۳

 

کود مرغی:درصد ازت: ۵ درصد فسفر ۳  درصد پتاس ۱.۵


منبع:www.ake.blogfa.com

 

خاک و ویژگی ها ی ان برای گیاهان

یکی از مواردی که برای گیاهان خیلی مهمه خاک است. که خاک دارای ویژگی های است بطوریکه این ویژگی ها ممکن است در مناطق مختلف با هم متفاوت باشند و ما در هر منطقه پوشش گیاهی خاصی رو ببینیم در واقع برای کشت یک محصول باید به عوامل مختلفی توجه داشته باشیم که یکی از این عوامل ویژگی های خاک است. یکی از این ویژگی ها میزان اسیدی و قلیایی بودن خاک است که معیاری که برای اینکار استفاده میکنیم PH است. بطوریکه در PH های کمتر از 4 و بیشتر از 9 گیاهان دچار مشکل میشوند. در خاکهای جنگلی و معتدله که میزان بارندگی زیاد است کاتیون هایی که در خاک وجود دارند شسته میشوند ولی هیدروژن در خاک باقی میماند که باعث پایین آمدن PH میشود. در PH های پایین فعالیت میکروارگانیزم ها دچار اختلال میشود. معمولا PH مناسب برای گیاهان چیزی بین 6 تا 7 است البته بعضی از گیاهان مثل جو میتوانند PH بالایی را تحمل کنند. در صورتی که خاک خیلی اسیدی بود میتوانیم برای کاستن این خاصیت خاک از آهک استفاده کنیم. یکی دیگر از فوایدی که خاک دارد اینست که گیاه میتواند از عناصر غذایی که در خاک وجود دارد استفاده کند در واقع گیاهان برای رشد و تولید محصول احتیاج به عناصری دارند که آنها را به عناصر ماکرو و میکرو تقسیم بندی میکنند. یکی از عناصر ماکرو نیتروژن میباشد و این عنصر نقش بسیار مهمی در رشد گیاه دارد بطوریکه با کمبود آن رشد گیاه کم شده و برگ ها پژمرده میشوند. یکی دیگر از این عناصر فسفر میباشد. این عنصر در توسعه ریشه موثر است. از عناصر میکرو میتوان آهن و روی و منگنز و مس و ..را نام برد. که هر کدام در رشد گیاه نقشی دارد. برای مثال روی در فعال کردن آنزیم ها نقش دارد. و یا منگنز در تنفس نقش دارد. اما یکی دیگر از نقش های خاک نگهداری آب است. آب در که در فعل و انفعالات گیاه نقش دارد یکی از مهمترین فاکتورهای رشد برای گیاه به حساب می آید. که البته ظرفیت خاک ها یی با ساختمان های مختلف برای نگهداری آب با هم فرق میکنه یکی دیگه از خصوصیاتی که خاک داره اینه که گیاه میتونه ریشه های خودشو در اون گسترش بده و خودش رو در اون ثابت کنه بطوریکه در اثر بعضی عوامل از جمله آب های روان ویا باد بتونه در جای خودش ثابت بمونه و به حیات خودش ادامه بده و همینطور وجود نور که در هنگام جوانه زنی مضر میباشد و از جوانه زنی جلوگیری میکند نیز در خاک بصورت نکته مثبتی درآمده بطوریکه در تاریکی که برای بذر هایی که در خاک قرار میگیرن بوجود آمده در واقع یکی از شرایط مطلوب برای آنها که نبود نور است تامین شده و با داشتن شرایط دیگر مناسب برای جوانه زنی میتوانند جوانه بزنند و رشد خود را آغاز کنند. البته با تمام ویژگی های مثبتی که خاک دارد گاهی این فاکتور مهم گیاهی برای گیاهان ممکن است در بعضی جاها به اندازه کافی وجود نداشته باشد. آیا این به این معنی است که ما دیگه نمی تونیم گیاهی رو بوجود بیاریم و باید از این نعمت الهی محروم باشیم؟ مسلما اینطور نیست و ما میتوانیم با شناخت نقش خاک و مهیا کردن شرایطی که خاک برای گیاه بوجود می آورد بطور مصنوعی به پرورش گیاهان اقدام کنیم. که برای این نوع کشت میشه کشت هیدروپونیک یا معنی فارسی آن کشت آبی یا همون آبکشت رو نام ببرم. که البته چون فعلا موضوع در مورد خاک و نقش اونه در این مورد حرفی نمیزنم ولی در پایان بگم که خاک فاکتور بسیار مهمی برای وجود گیاهان و در کل حیات است.


منبع:www.ake.blogfa.com